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ABSTRACT

A spray-in-air aqueous cleaning system, which replaced I, I,I trichloroethane (TCA) vapor degreasing, is used for

critical cleaning of Space Shuttle Redesigned Solid Rocket Motor (RSRM) metal parts. Small-scale testing

demonstrated that the alkaline-based wash solution possesses adequate soil loading and cleaning properties.

However, full-scale testing exhibited unexpected depletion of some primary components of the wash solution.

Specifically, there was a significant decrease in the concentration of sodium metasilicate which forced change-out

of the wash solution after eight days. Extension of wash solution bath life was necessary to ease the burden of

frequent change-out on manufacturing. A laboratory study supports a depletion mechanism that is initiated by the

hydrolysis of sodium tripolyphosphate (STPP) lowering the pH of the solution. The decrease in pH causes

polymerization and subsequent precipitation of sodium metasilicate (SM). Further investigation showed that

maintaining the pH was the key to preventing the precipitation of the sodium metasilicate. Implementation to the

full scale operation demonstrated that periodic additions of potassium hydroxide (KOH) extended the useful bath

life to more than four months.

INTRODUCTION

The Thiokol Corporation Ciearfield Utah facility refurbishes reusable post flight Space Shuttle solid rocket motor

metal hardware. Several processes are employed to strip the paint, insulation, and charred material down to a

virgin metal surface. Aiter refurbishment, the hardware is shipped 75 miles north by rail to the primary

manufacturing area and undergoes a final surface preparation process (aqueous clean and grit blast) prior to bond

assembly. Previously, TCA vapor degreasing was used to clean the metal surface at both locations. Recently,

aqueous cleaning replaced vapor degreasing because of the ozone depleting properties of TCA. The aqueous

cleaning process, which consists of three phases (wash, rinse I, and rinse 2) is conducted in a Proceco Incorporated

spray-in-air system. Sub-scale testing was used to optimize process parameters which included determination of

the ideal concentration and temperature of the cleaner.
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The full-scale process demonstrated a 20°F reduction in wash solution temperature after circulation from the

heated holding tank to the spray in air nozzle. This reduction compromised cleaning efficiency and increased

foaming in the cleaning chamber. Apparently, the foam suppression mechanism of the nonionic surfactants was

inadequate at the lower temperature. The wash solution set temperature was increased from 150 to 170°F to

compensate for the heat loss.

Analysis of the cleaning solution showed depletion of several primary components of the alkaline cleaner.

Specifically, the rate of depletion of SM and STPP was greater than initially predicted. This depletion was

unacceptable because violation of concentration-based acceptance limits for the primary components of the alkaline

cleaner were established to ensure the cleanliness and condition of the hardware. Violation of these limits burdens

manufacturing operations with frequent change-out of the wash solution. Cursory review of the chemistry data

linked the depletion of STPP to the increase in wash solution temperature from 150 to 170°F and localized heating

in excess of 170°F in the heating tank.

A laboratory study confirmed that the depletion of STPP is dependent upon the temperature of the wash solution.

It also determined that STPP depletion reduces pH which jeopardizes the SM solubility which is a function ofpH.

A subsequent laboratory study demonstrated that additions of potassium hydroxide (KOH) to the wash solution

controls pH above levels which circumvent SM precipitation, thereby extending the useful bath life of the wash

solution. This KOH add-back method was successfully demonstrated in the full-scale system through a bath life

study which extended the bath life to at least 120 days.

RESULTS AND DISCUSSION OF THE TEMPERATURE STUDY

The objective of this study was to determine the effect of exposure of the wash solution to a range of production

representative temperatures on the pH and cleaner constituent concentrations.

General Outline of Procedure

Three distillation apparatuses were configured to maintain 10-percent solutions of the alkaline cleaner at

temperatures of 150°F, 175°F and 200°F for five twenty-hour cycles. The three temperatures replicated the range

of temperatures of the wash solution in the full-scale production process. General observations of the physical state

of the solutions were recorded throughout cycling. At the end of each 20-hour cycle an aliquot of the solution was

removed and the primary components of the cleaner were determined for these samples. The following table lists

the primary components of the cleaner (excluding water and potassium hydroxide) and the analytical techniques

used for measurement. Alkalinity and pH were also determined.
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Table 1. Analytical Methods

Alkaline Cleaner Component

Sodium Tripolyphosphate Ion Chromatography

Sodium Metasilieate ICP-AES

UV/Vis Colorimetric

D-08 (Anionic Detergent) HPLC

D-22 (Anionic Detergent) HPLC

D-26 (Nonionic Detergent) HPLC

D-30 (Nonionic Detergent)

Method of Analysis

HPLC

Sixteen samples were collected during the study. The samples consisted of one control of the initial cleaner

solution and 15 samples collected from five intervals of 20 hours for three temperatures (150°F, 175°F and 200°F).

A cycle refers to the heating of a sample from ambient to the controlled temperature (150°F, 175°F, or 200°F)

maintaining the sample at that temperature for 20 hours, then cooling back to ambient temperature. No external

cooling was applied. A reference to "Cycle 3" indicates that the sample was collected after the third cycle and was

exposed to the controlled temperature for a total of 60 hours. A 20-hour cycle simulated the time duration to

complete a single production wash cycle if the cleaning solution is initially at ambient temperature.

Figures 1, 2 and 3 illustrate the behavior of the cleaner components during cycling at each temperature in terms of

percent of initial concentration. In figure 3, the last three data points for D-30 were not included because the

actual concentration was lower than the detection limit of the method. The relative detection limit is 40 percent of

the initial concentration. The concentration of the each component at time zero was determined from the control

sample.

The plots show that temperature significantly affects the concentrations of STPP, SM and pH. The effect on the

surfactants is less marked except at 200°F. A more detailed discussion of the effect of temperature on each cleaner

constituent follows.
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Sodium TriDolyphosphate (STPP)

Sodium tripolyphosphate (STPP) functions as a builder in the alkaline cleaner. Builders are added to cleaners to

sequester water-soluble polyvalent ions (alkaline earth and transition metals) and prevent them from interfering

with detergents in the cleaner. In addition, STPP deflocculates dirt particles and contributes to the alkaline buffer

capacity _]J. Tripolyphosphate (P30_05-) is the linear form of triple condensed orthophosphate. Depletion of STPP

occurs when a tripolyphosphate molecule is hydrolyzed to form one molecule of orthophosphate (PO43-) and one

molecule of pyrophosphate (P2074). Further hydrolysis of the pyrophosphate results in two molecules of

orthophosphate (2). Figure 4 shows the concentration of STPP and its hydrolysis products over time at the three

temperatures as a percentage of the molar phosphorous concentration.
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This figure illustrates the effect temperature has on the hydrolysis rate of STPP. The magnitude of this effect,

particularly at 200°F, supports the theory that localized intense heat from the heat source can significantly

accelerate the loss of STPP from cleaning solutions.

Sodium Metasilicate (SM_

Sodium metasilicate functions as a corrosion inhibitor, deflocculant, and wetting agent. Figure 5 compares the

silicon results from ICP-AES and UV/Vis colorimetric analysis (heteropolyblue siligomolybdic complex) of the

samples collected during the temperature cycle study. A significant difference is observed between the silicon

results obtained by the two procedures. This discrepancy can be attributed to sensitivity differences of the two

procedures for various silicon species. (A literature search is in progress to determine the silicate forms for which

the colorimetric method is sensitive. )
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The results suggest that the colorimetnc method is less sensitive to the polymeric silicates than the ICP-AES

method. The latter method detects any form of soluble silicon that is aspirated into the plasma.
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It has been determined experimentally that the metasilicate monomer is the dominant species the at a pH greater

than 10.9. However, longer silicate polymers, colloids, and possibly crystalloids are formed when the pH is

lower (3). Figures 2 and 3 show a steady decline in pH. Figure 5 shows a significant difference in metasilicate

concentration measured by the two analytical techniques at ! 75°F. Apparently, at this temperature the pH is

decreasing at a rate slow enough to observe the formation of longer, soluble silicate polymers. The rate in the

decline ofpH is much faster at 200°F than 175°F. At 200°F, an insoluble silicate residue was collected from each

of the samples and the results of ICP-AES and colorimetric analysis are essentially the same.
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Alkalin, i_. and pH

Alkalinity is a measurement of the buffer capacity of the solution to accept free acid. The performance of most

aqueous cleaners is optimal under alkaline conditions and over a limited range in pH. In addition, ferrous surfaces

are less susceptible to corrosion in an alkaline environment. It should be noted that the method for determining

alkalinity in this study is a direct titration method to an end point near a pH of 7. Typically, measurement of free

alkalinity provides meaningful data concerning the buffer capacity of a solution to accept W. Tripolyphosphate is

the component of this alkaline cleaner that serves as a buffer over the useful pH range. It is difficult to establish

appropriate acceptance values for free alkalinity because the buffering capacity of the wash solution is continuously

shifting as the STPP is hydrolyzed. Thus, free alkalinity monitoring is less meaningful to this aqueous cleaning

solution.

,_nionic and Nonionic Detergents

The alkaline cleaner contains four surfactants. D-8 and D-22 are the numerical references assigned to the anionic

surfactants and D-26 and D-30 refer to the nonionic surfactants. The actual names and composition of the

surfactants are proprietary. The production database indicates that the surfactant concentrations remain relatively

constant throughout hardware cleaning. The temperature cycle study verifies that the surfactants are thermally

stable. This is particularly true of the anionic surfactants which showed no decomposition at any of the

temperatures. Figures 1, 2 and 3 illustrate the concentration behaviors of the surfactants over time at the tested

range of temperatures. These charts also show that D-26 and D-30 were stable at 150°F and 175°F. However, at

200°F the concentration of D-30 decreased below detectable levels and D-26 increases in concentration. Size

exclusion chromatography was the method used to monitor the concentration of D-26 and D-30 and it is possible

that a converted form of D-30 is being detected as D-26 by this technique.

.Conclusions of Temperature Study

The temperature study presented herein is an attempt to understand the reason for depletion of primary

components of Brulin 1990 GD during the acceptance limit testing. A great deal of information has been gained

by monitoring the individual components after exposure to elevated temperature. The temperature study strongly

supports our suspicion that increasing the temperature of the aqueous cleaning solution does accelerate the

depletion of the STPP and metasilicate. In addition, the pH of the solution decreases as a function of temperature

and may have a role in depletion of the key components as well. The information gained during the temperature

study will be used to direct a literature search to determine possible mechanisms for depletion.
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INTRODUCTION OF DEPLETION MECHANISM

The results of the temperature study were reviewed in conjunction with full-scale production data. This review

revealed four factors that limit useful bath life of the production system wash solution.

The first factor relates to the instability of all components at the extreme temperature of 200°F. The wash solution

is exposed to this temperature because of localized heating in the area near the steam heated coils in the holding

tank. To circumvent this problem, a circulating pump was installed in the holding tank to reduce pockets of

intense heat and eliminate the heating gradient.

The remaining three factors were the decrease in the nominal concentration ofmetasilicate, pH and

tripolyphosphate. The decrease in the concentration of the three components was observed at varying degrees at all

three temperatures. The depletion of the SM is the most significant because the concentration fell below

established production acceptance limits in approximately eight days.

The information from the temperature study was combined with additional information obtained from literature

sources to develop a correlation between STPP hydrolysis and the depletion of other components, In 1984, a

kinetic study on the hydrolysis oftripolyphosphate was performed at the University of Zurich. The study described

the effect that pH and temperature have upon the reaction and showed that the highest reaction rates occur at low

pH and high temperature, tz_ The hydrolysis reaction of tripolyphosphate and pyrophosphate occurs as follows:

Hydrolysis of tripolyphosphate,

P30_o 5" + H20

Hydrolysis of pyrophosphate,

P2074 + H20

P2074" + PO43 + 2W.

2PO43 + 21T.

Both hydrolysis reactions liberate free acid as products. Figures I, 2 and 3 show that both alkalinity and pH

decrease as a function of temperature. The decrease of both parameters correlates closely with the liberation of

acid that occurs when tripolyphosphate decomposes to orthophosphate. Identification of the hydrolysis of

tripolyphosphate as a source of acid was an important breakthrough. Previously, it was hypothesized that the

decrease in solution pH was caused by absorption of atmospheric carbon dioxide. However, the wash solution is

enclosed in a holding tank which limits atmospheric exposure. Thus, the hydrolysis oftripolyphosphate is the

probable mechanism responsible for decreasing wash solution pH.
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Further research indicated that metasilicate depletion is indirectly caused by the elevated temperature. This

mechanism is more a function of wash solution pH. According to technical references, soluble silicates polymerize

in solution until the polymer exceeds solubility causing the formation of colloids and crystalloids. The extent of

polymerization is greatly influenced by the pH of the solution (3).

In summary, the depletion mechanism as derived _om both the literature and data collected in the temperature

study supports the theory that the rate of STPP decomposition is a function of temperature. The decomposition of

STPP is a hydrolysis reaction that liberates free acid and subsequently lowers the pH of the solution. The

polymerization of sodium metasilicate increases as the pH of the cleaning solution drops. Eventually, the

propagation of the silicate polymer exceeds the solubility limit and a residue is observed.

Identification of the depletion mechanism permitted the conception of an approach to extend the useful bath life of

the wash solution. A key element to this approach is to maintain the pH of the wash solution above the critical

level at which metasilicate precipitates. This objective can be accomplished simply by adding KOH, a primary

constituent of the cleaner, to the wash solution. This approach does not prevent STPP depletion. This is

acceptable became the sequestering action is mitigated by use ofdeionized water in the wash solution. (The

possibility of reduction of the wash solution process temperature was considered. However, this approach is

impractical because of foaming, cleaning efficiency and system requalification issues.)

RESULTS AND DISCUSSION OF KOH ADD BACK STUDY

A second study was designed to investigate the effect of periodic additions of potassium hydroxide (KOH) to adjust

the pH of the solution back to its nominal value. Two distillation apparatuses were configured similar to that of the

temperature study. The alkaline cleaner solutions were maintained at ! 70°F for 21 hours cycles. At the end of

each 21-hour cycle the KOH was used to adjust the pH of one of the solutions back to its nominal value of 10.3.

The other solution was used as a control and lef_ unchanged. The study was extended to 15 cycles for a total of 3 ! 5

hours so that the precipitation of the metasilicate could be observed in the control sample. Samples collected at the

end of each 21-hour cycle were analyzed by using the methods listed in Table I. The following figures show the

results of this study.
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Figures 6 and 7 show that both the concentration of the anionic and nonionic surfactants are relatively stable and

independent of additions of KOH. The surfactant package tolerates variation in temperature and pH by exhibiting

exceptional soil loading and cleaning efficiency characteristics throughout sub- and full-scale testing.
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The literature which discusses the hydrolysis of STPP states that lower solution pH accelerates the depletion of

STPP. Therefore, it was anticipated that a cleaner solution with controlled pH would sustain a higher

concentration of STPP than the uncontrolled solution. This outcome is exhibited in Figure 8. At zero time, both

solutions measured an identical pH of 10.30. However, as the hydrolysis reaction liberated flee acid, the pH of the

solutions dropped. The pH of the solution with KOH additions was maintained at 10 £-0.3. Conversely, the control

solution pH decreased from 10.3 to 8.6 over the duration of the study. After 315 hours at 170°F, the solution with

KOH additions was approximately twice the concentration of STPP as the control sample.
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The format of Figures 9 and 10 differs from the previous three charts. The SM concentration results of the KOH

add back solution are presented separately from that of the control sample. This change allows for plotting and

discussion of the effect of the STPP hydrolysis reaction on all other components. Figure 9 graphs the depletion of

SM, pH and STPP as function of time at 170°F. The depletion ofpH and SM is initiated by the hydrolysis of STPP

which depletes to less than twenty percent of its initial concentration and liberates acid as a product of the reaction.

The liberated acid causes the pH of the solution to decrease from 10.3 to 8.6 over the course of the study,

The extent of polymerization of the metasilicate as determined by the colorimetric method coincides with the

decrease in pH. It is interesting to note that the deviation in pH and colorimetric results at 42 hours occurred

because the sample container became unsealed which allowed interaction with atmospheric carbon dioxide. The

carbon dioxide absorbed into the solution, reduced the pH, and caused the metasilicate to polymerize.
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This event occurred while the sample was stored at 4°C. Two sets ofmetasilicate results are included in Figure 9

so that the polymerization ofmetasilicate can be observed. The colorimetrie method is most sensitive for the

monomer ofmetasilicat¢. The ICP method determines all forms of silicate except for the insoluble portion. The

two methods are useful to distinguish the form in which the metasilicate is present in the solution. Initially the pH

of the solution is high and favors conditions for the metasilicate monomer. As the pH is lowered by the hydrolysis

oftripolyphosphate the metasilicate monomers form to soluble oligomers and polymers which is shown in Figure 9

by the decline in the data as determined using the colorimetrie method. However, the soluble silicon element

concentration remain unchanged until the pH of the solution decreases to 9.2 as indicated by the data obtained

from the ICP method. Below this pH the concentration of the soluble silicates declines to 40-percent of the initial

concentration and a precipitate of insoluble silicates is observed.
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CQncb_sious of the KOH Add Back, Study

The results of this study confirm the theory that the rate of STPP decomposition increases significantly as a

function of temperature. The decomposition of STPP is a hydrolysis reaction that liberates free acid and

consequently lowers the pH of the solution. The polymerization of SM increases as the pH of the cleaning solution

drops. Eventually, the propagation of the silicate polymer exceeds the solubility limit and a residue is observed.

The pH and SM concentrations of the cleaning solution can be controlled by addition of KOH.

PRODUCTION IMPLEMENTATION OF THE KOH ADD BACK METHOD

The KOH add back method was recommended to the production process to control wash solution pH and SM

concentrations. The effectiveness of the method was assessed in the full-scale system through a bath life study

which transpired over about 125 days. (Testing was terminated to accommodate production implementation of this

aqueous cleaning system.) To strengthen the KOH add back database, numerous full-scale production components

were washed and rinsed throughout the study. KOH was added to this 2,200 gallon system eight times for a total

of 14,230 gram (31,4 pounds). The add back events are correlated to pH in Figure 1 i.

To verify the cleaning efficiency of KOH adjusted wash solution, bond testing was conducted on a weekly basis.

Bond specimen test cycles consisted of fracture energy (tapered double cantilever beam) samples which simulate

production bondlines (aluminum/EA 913NA adhesive and steel/EA 913NA adhesive). These samples are

extremely sensitive to surface blemishes such as contamination caused by inefficient cleaning or rinsing.

pH Chemistry

Figure 11 plots the pH and STPP concentrations of the wash solution over the life of the bath during this study.

Figure 1 ! also relates KOH addition events to pH. The KOH add back method effectively controlled the wash

solution pH above the critical level (9.3) required to prevent SM precipitation. As expected, the frequency of KOH

addition corresponded to pH fluctuation. Six of the seven additions occurred before 55 days of bath life during the

period of greatest fluctuation in pH. Approximately 50 days elapsed between the sixth and seventh/final additions.

The period of greatest pH fluctuation also corresponded to the interval of exponential rate of STPP depletion.

Eventually, the pH stabilized as the STPP concentration approached zero. Any pH fluctuation subsequent to

complete depletion of STPP was attributed the decomposition of pyrophosphate which also liberates free acid but at

a slower rate than the tripolyphosphate.
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Figure11alsoidentifies the time to depletion of the STPP concentration below the production process parameter

control limit. In effect, this rate limits the wash solution bath life to about 30 days under the present process

control protocol. The bath life could be increased to about 120 days if the process control protocol excluded the

STPP concentration limit.
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Phosohate Chemistry,

Figure 12 correlates the phosphate concentration data to the wash solution bath life. The hydrolysis reaction is

exhibited in the behavior of the phosphate constituents in the wash solution. The STPP concentration depleted to

an undetectable level (<3.3 ppm) a_er about 76 days.
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Simultaneously,thesodiumorthophosphateandpyrophosphate concentrations increased until about 55 days.

Thereafter, the hydrolysis of pyrophosphate becomes the primary source of additional orthophosphate. The

hydrolysis ofpyrophosphate had not gone to completion when testing was terminated.
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Figure 12. Phosphate Concentrations versus Full-Scale System Bath Life

l_lemgntal Cong¢ntra_ions

The elemental concentration analyses are plotted in Figure 13. These concentrations are indicators of components

of the alkaline cleaner of which they are elemental constituents.
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Specifically:

• Silicon (Si) is a constituent of SM

• Sodium (Na) is a constituent of SM, STPP, and the anionic surfactants

• Phosphorous (P) is a constituent of the phosphates

• Potassium (K) is a constituent of KOH

The Na and P elemental concentrations remained constant in the wash solution over the life of the bath.

Predictably, the K concentration increased over time because of KOH additions. The Si concentration also

increased overall. This outcome is not well understood. A plausible explanation is the reintroduction into solution

of sodium metasilicat¢ contained in preexisting tank residues through pH manipulation.
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Figure 14 plots another relevant relationship, pH and Si dement concentration vs. time. Early in the life of the

bath when the pH fluctuation was greatest the Si concentration also fluctuated substantially. In fact, prior to the

first KOH add back, the pH dipped to 9.39 and the Si concentration dropped close to the process control limit.

This behavior is consistent with the lab study prediction of the dependency of the SM concentration on pH.

Eventually, the Si concentration stabilized concurrent with oH.
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Surfactant Concentrations

The plot of the wash solution surfactant concentrations vs. beth life shows stable behavior of the anionic surfactant

(D-8 and D-22) concentrations (Figure ! 5). Apparently, these constituents are thermally stable and unaffected by

pH fluctuation. The nonionic surfactant (D-26 and D-30) concentrations fluctuated to a greater degree over the life

of the both. This outcome may be due to poor sampling methods. These nonionic surfactants enable the low

foaming behavior by a reverse solubility mechanism. This mechanism causes the nonionic surfactants to go out of

solution at higher temperatures (> 110°F). Therefore, it is crucial to operate the equipment for an extended period

of time to ensure sampling of homogeneous wash solution.
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Fracture Enerfv

The fracture energy data (aluminum/EA 913NA adhesive) are plotted in Figure 16. Fracture energy testing is

sensitive to surface phenomena which affect bond strength and failure mode. Therefore, this method is effective in

differentiating potential effects of wash and rinse residues on cleaning efficiency. After 57 days of bath life, the

shelf-life of the lot of EA 913NA adhesive expired. Consequently, another accepted lot was introduced into the

testing. In an attempt to deconfound the effect of adhesive lot switch over, double batches of specimens were

cleaned, bonded, and tested as identified in the figure.
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Figure 16. Fracture Energy (Alumlnum/EA 913 NA Adhesive) versus Full-Scale System Bath Life

The aluminum fracture energy data (aqueous clean only) show considerable fluctuation throughout bath life. After

about ten days the fracture energy dropped then recovered in subsequent sample sets. Apparently, this data point

was an outlier and the cause is unknown. After about 40 days of bath life, the fracture energy began gradually

declining to its lowest level at about 72 days into the bath life.
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Thistrendcorrespondedtotwoevents: (I) adhesive lot switch over and (2) increasing rinse water conductivity,

which corresponds to decreasing purity. The duplicate tests showed a significant discrepancy in fracture energy

due to the adhesive lot change. However, these sample sets were also rinsed with low purity rinse water. After

about 100 days of bath life, the fracture energy of specimens prepared with the new adhesive lot decreased to a low

level. This outcome also coincides with low purity rinse water. Apparently, there was a synergistic effect on the

fracture energy caused by elapsing adhesive shelf life and lower rinse water purity. Regardless, these low values

were not associated with the effects on the wash solution from KOH add back chemistry. (The steel fracture energy

data did not vary as much as the aluminum data which was predictable because steel is less sensitive to surface

phenomena. However, the steel fracture energy vs. bath life correlation mirrored the aluminum data.)

It is crucial to note that the gritblast step offset possible effects from ineffective rinsing because the fracture energy

stabilized considerably after gritblast. These values are representative of the production surface preparation

process which was designed with inherent redundancy to achieve exceptional bondline surface preparation. In this

case, gritblasting compensated for a deficiency in the aqueous cleaning process (poor rinsing).

Conclusions of the KOH Add Bac k Study in the Full-Scale .System

The chemistry properties of the wash solution in the full-scale system responded as predicted by the laboratory

studies. Also, the KOH add back method effectively controlled the SM concentrations and pH in the full-scale

system without negatively affecting the cleaning effectiveness of the wash solution. In addition, control of the

wash solution pH through KOH add back extended the bath life to at least 120 days.

ACKNOWLEDGMENTS

The authors of this paper wish to thanks NASA and Thiokol RSRM Program Management and Engineering for

their funding and sponsorship of this study.

REFERENCES

!. Kirk-Othmer, Encyclopedia of Technology, Vol. 17, Pages 452 - 453, Wiley, New York, 1991.

2. Zinder, B; Hertz, J; Oswald, H. R., Water Res., 1984, Vol. 18, No. 5, Pages 509- 5112.

3 Wilhelm, E., The Physical Chemistry of the Silicates, University of Chicago Press, Chicago, 1954.

359


